Research Article: Optimal design for a composite wind turbine blade with fatigue and failure constraints

My latest article to appear online is entitled Optimal Design for a Composite Wind Turbine Blade with Fatigue and Failure Constraints. This is the first paper I wrote in the course of my PhD, submitted to the journal of Transaction of the Canadian Society for Mechanical Engineering in January 2014, and accepted in December 2014 (Vol. 39, No. 2, 2015). 

The search for more efficient and sustainable renewable energies is rapidly growing. Throughout the years, wind turbines matured towards a lowered cost-of-energy and have grown in rotor size therefore stretched the role of composite materials that offered the solution to more flexible, lighter and stronger blades. The objective of this paper is to present an improved version of the preliminary optimization tool called CoBlade, which will offer designers and engineers an accelerated design phase by providing the capabilities to rapidly evaluate alternative composite layups and study their effects on static failure and fatigue of wind turbine blades. In this study, the optimization formulations include non-linear failure constraints. In addition a comparison between 3 formulations is made to show the importance of choosing the blade mass as the main objective function and the inclusion of failure constraints in the wind turbine blade design.

La recherche pour des énergies renouvelables plus efficaces et durables est en forte croissance. Au fil des années, les éoliennes ont acquis de la maturité avec un coût plus réduit et des tailles de rotor plus grandes élargissant ainsi l’utilisation des matériaux composites qui offrent plus de flexibilité, plus de légèreté et plus de solidité. L’objectif de cet article est de proposer une version améliorée du logiciel d’optimisation préliminaire Co-Blade, qui permettra aux concepteurs d’accélérer la phase de conception des pales d’éolienne en matériaux composites grâce à des outils d’études de diverses configuration des laminés composites et de leur comportements en rupture et en fatigue. Dans cette étude, les formules d’optimisation tiennent compte des contraintes de ruptures non linéaires. Additionnellement, une comparaison de 3 formules d’optimisation a été effectuée afin de mettre en évidence l’importance du choix de la masse tel que fonction objective principale et de la considération des contraintes de rupture dans la conception des pales d’éoliennes.

Click Here to access the full-text. 
I dedicate this paper to first and foremost the Lord, my supervising team Dean Rafic YounesDr Adrian Ilinca and Dr Jean Perron and my family & friends for all their academical and emotional support.


  1. This comment has been removed by a blog administrator.


Post a Comment

Popular posts from this blog

WASET Conference is a FAKE

The Impact of Lebanon's Political Crisis on Academic Publication and Higher Education

Optimization Problem Solved by a Genetic Algorithm - Wifi Antenna